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ABSTRACT

This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over

Northern Hemisphere extratropics both in the observations and climate model predictions. A suite of nu-

merical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of

the stratosphere in seasonal predictive skill of extratropical near-surface land temperature. It is shown that

most of the lead-0-month spring predictive skill of land temperature over extratropics, particularly over

northern Eurasia, stems from stratospheric initialization. It is further revealed that this predictive skill of

extratropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical

connection between the stratosphere and troposphere is also demonstrated by the significant correlation

between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the

stratospheric zonal wind anomalies to the lower troposphere.

1. Introduction

The predictability of seasonally averaged surface temper-

ature and precipitation has long been known to arise from

year-to-year variations of the ocean. Numerous studies have

demonstrated the role of the tropical Pacific and its accom-

panying atmospheric component (known as ENSO) in sea-

sonal prediction of temperature, precipitation, and many

other essential climate variables (Lau 1985; Ropelewski and

Halpert 1986; Stockdale et al. 1998; Shukla 1998; Wang et al.

2000; Jia et al. 2015; Yang et al. 2015). Compared to the close

connection between tropical surface climate and ENSO, and

skillful seasonal prediction of tropical climate in the current

generation of global climate models, the connection between

extratropical surface climate and ENSO is limited, and the

predictive skill of surface climateover theextratropics, suchas

northern Eurasia, is much lower (Kryjov 2012). This suggests

that, in order to extract seasonal prediction skill of surface

climate over northern Eurasia, one must seek other drivers

beyond tropical ocean–atmosphere coupling. The extra-

tropical stratosphere, which has relatively long time scales of

variability and has been shown to connect to the troposphere

below it (Thompson et al. 2002; Cohen et al. 2007; Kidston

et al. 2015;Baldwinet al. 2003), could serveas sucha sourceof

seasonalpredictabilityover theextratropics.The stratospheric

influence on the troposphere and surface climate can arise

through fluctuations in the speed of the stratospheric cir-

cumpolar westerly jet (i.e., polar vortex) that forms in winter

and spring. For example, over the Northern Hemisphere, a

weakening of the stratospheric polar vortex shifts the

tropospheric jet stream southward (often associated with

the negative phase of the Arctic Oscillation), leading to

low temperatures over northern Eurasia and the eastern

United States (Thompson et al. 2002; Kidston et al. 2015).

Several studies have shown seasonal predictive skill of

extratropical surface climate and atmospheric circula-

tion such as the Arctic Oscillation (AO)/North Atlantic
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Oscillation (NAO), but the source of the skill was not fully

identified (Scaife et al. 2014; Kang et al. 2014; Riddle et al.

2013; Butler et al. 2016). Some studies suggested that the

stratosphere plays a role in Northern Hemisphere winter

climate variability using simulations from an atmospheric

general circulation model (AGCM; Scaife et al. 2005;

Douville 2009). Douville (2009), for example, quantified

the stratospheric contribution on the interannual variabil-

ity of winter surface air temperature and precipitation over

the Northern Hemisphere in AGCM simulations in which

the stratosphere was relaxed to observations. However, in

real-time seasonal predictions, whether such variability

driven by the stratosphere is predictable has not been fully

addressed. The present study not only identifies the

stratospheric-driven variability inmodel simulations but also

further reveals the stratospheric influence on predictive skill

in an operational seasonal forecasting system. A few other

studies showed seasonal predictive skill of the NAO and

surface climate arising from the stratosphere in climate

forecasting systems under extreme stratospheric conditions

(Scaife andKnight 2008; Stockdale et al. 2015; Tripathi et al.

2015; Scaife et al. 2016; Fereday et al. 2012; Sigmond et al.

2013; Domeisen et al. 2015). However, separating the gen-

eral role of the stratosphere in seasonal predictive skill of

surface climate is very challenging because of the strong

coupling between the stratosphere and troposphere. In this

study, we set up a suite of numerical experiments, including

both climate simulations and retrospective forecasts, to iso-

late the role of the stratosphere in seasonal predictive skill of

theNorthernHemisphere extratropical surface climate. The

results clearly reveal the actual predictive skill driven by the

stratosphere in a coupled real-time forecasting system and

prove the fundamental mechanism connecting the strato-

sphere and troposphere in both observations and model

predictions.

2. Model, experiments, data, and method

a. Model description

The Geophysical Fluid Dynamics Laboratory (GFDL)

high-resolution Forecast-Oriented Low Ocean Resolu-

tion (FLOR) model is used in this study (Vecchi et al.

2014). FLOR is a new coupled global climate model de-

veloped based on the GFDL Climate Model, version 2.5,

(CM2.5; Delworth et al. 2012) and Climate Model, ver-

sion 2.1, (CM2.1; Delworth et al. 2006). It has a horizontal

resolution of 50 (100)km, and 32 (50) vertical levels in the

atmosphere (ocean). The upper boundary is 1hPa. FLOR

is used in real-time seasonal predictions, contributing to

the North AmericanMultimodel Ensemble (NMME) for

seasonal prediction (Kirtman et al. 2014). An additional

description of FLOR can be found in Vecchi et al. (2014).

b. Experiments

We conducted two sets of experiments consisting of

two constrained simulation experiments and three ret-

rospective forecast experiments using FLOR, and the

two sets of experiments are summarized inTables 1 and 2.

These experiments are used to isolate the role of the

stratosphere in seasonal prediction of surface climate.

1) FLOR CONSTRAINED EXPERIMENTS

The first set of experiments consists of two con-

strained simulation experiments, simulating the climate

TABLE 1. List of FLOR constrained experiments.

Expt name Constraints Radiative forcing Time period Ensemble size

SSTonly SST relaxed to HadISST (5-day time scale) Time varying 1981–2015 5

SST1Strat SST relaxed to HadISST (5-day time scale); horizontal

winds and temperatures above 100 hPa relaxed to

MERRA (6-h time scale)

Time varying 1981–2015 5

TABLE 2. List of FLOR retrospective forecast experiments.

Expt name Atmospheric/land initial conditions

Ocean/sea ice

initial conditions Radiative forcing Time period

Ensemble

size

SST-forcedAIC AM2.5 forced by observed SST Ensemble Coupled Data

Assimilation

Time varying 1981–2015 12

ObsSIC Horizontal winds and temperatures

above 100 hPa relaxed to MERRA

(6-h time scale)

Ensemble Coupled Data

Assimilation

Time varying 1981–2015 12

ObsAIC Surface pressure, horizontal

winds, and temperatures of entire

atmosphere column relaxed to

MERRA (6-h time scale)

Ensemble Coupled Data

Assimilation

Time varying 1981–2015 12
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from 1981 to 2015. Each experiment contains five en-

semblemembers. In the first experiment, the time-varying

SSTs are relaxed to the observations from HadISST1

(Rayner et al. 2003) on a 5-day time scale (called the

SSTonly simulation). In the second experiment, the re-

laxation of SSTs is identical to SSTonly; in addition, the

horizontal winds and temperatures in the stratosphere

(above 100hPa) are relaxed to the Modern-Era Retro-

spective Analysis for Research and Applications

(MERRA; Rienecker et al. 2011) on a 6-h time scale

with a tapering factor a (called the SST1Strat simula-

tion). The tapering factor a is one for model layers above

50hPa (i.e., 1, 4, 8, 14, 21, 30, and 41hPa) and is zero for

model layers below 100hPa. From 50 to 100hPa, a is

linearly reduced from one to zero, allowing a smooth

transition from the stratosphere to troposphere. Figure 1

shows the climatological bias of zonal mean zonal wind

averaged over 608–908N as a function of month and

pressure level for SST1Strat and SSTonly. In SSTonly,

large positive bias is seen in the stratosphere (i.e., the

polar vortex is too strong), particularly in the boreal

winter season from January to March. The stratospheric

bias in SST1Strat is considerably reduced compared to

SSTonly because of the relaxation of stratospheric vari-

ables to the observed information in SST1Strat. The

radiative forcings in these two experiments are based on

observational estimates before 2005 and projections of

the representative concentration pathways scenario 4.5

(RCP4.5; Meinshausen et al. 2011) after 2005. Details of

these two FLOR constrained experiments are listed in

Table 1.

2) FLOR RETROSPECTIVE FORECASTS

The second set of experiments consists of three retro-

spective ensemble forecast experiments. In the first fore-

cast experiment, the atmospheric and land initial

conditions are taken from ensemble simulations of the

atmospheric component of FLOR [the GFDL Atmo-

spheric Model, version 2.5 (AM2.5)] that is forced by ob-

served SST, called SST-forcedAIC. The atmospheric and

land initial conditions in the second experiment are from a

set of relaxation-toward-observation coupled FLOR sim-

ulations in which the stratospheric (above 100hPa) tem-

peratures and horizontal winds are relaxed toward

MERRA on a 6-h time scale, as detailed above (herein-

after ObsSIC). Since ObsSIC includes observed initial

conditions only in the stratosphere, it does not contain

tropospheric weather information. The third forecast ex-

periment is conducted with an identical configuration to

ObsSIC, except that the atmospheric and land initial

conditions are from a set of FLOR simulations in which

the surface pressure, horizontal winds, and temperatures

throughout the entire atmosphere are relaxed toward

MERRA on a 6-h time scale (hereinafter ObsAIC; Jia

et al. 2016; X. Yang et al. 2016, unpublished manuscript).

The ocean and sea ice initial conditions in these three

retrospective forecasts are identical and are from

GFDL’s Ensemble Coupled Data Assimilation (ECDA)

FIG. 1. Climatological bias of zonal mean zonal wind (m s21) averaged over 608–908N as a function of month and

pressure level in the ensemble mean simulations from (left) SSTonly and (right) SST1Strat. The verification data

used here are the zonal wind fromMERRA from 1981 to 2015. The cross symbol indicates the bias is significant at

the 5% level based on a t test.
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system designed for CM2.1 (Zhang et al. 2007). The ra-

diative forcings in these three experiments are identical

to those in the FLOR constrained experiments described

above. Each retrospective forecast experiment contains

12 ensemble members. Each ensemble member is ini-

tialized on the first date of each month and integrated for

12months. The retrospective forecasts during 1981–2015

are analyzed in this study. Details on these three retro-

spective forecast experiments are displayed in Table 2.

c. Observational data

The observed near-surface (2m) temperatures were

from the Climatic Research Unit Time Series, version

3.10 (CRU TS v. 3.10) at a 0.58 resolution (Harris et al.

2014). The observed Niño-3.4 index was downloaded

from the National Oceanic and Atmospheric Adminis-

tration’s website (http://www.cpc.ncep.noaa.gov/data/

indices/ersst3b.nino.mth.81-10.ascii). We also used zonal

wind and sea level pressure (SLP) from MERRA

products.

d. Method

To isolate predictable patterns of sea level pressure,

we use the signal-to-noise maximizing empirical or-

thogonal function (S/N EOF) method, which optimizes

the ratio of signal-to-noise variance. This method,

FIG. 2. Time–height evolution of the zonal mean zonal wind (averaged over 608–908N) composite differences

(m s21) between the 5 years with strongest zonal mean zonal wind and the 5 years with weakest zonal mean zonal

wind at 50 hPa in (top) January and (bottom)March for (left)MERRAand (right)model predictions fromObsSIC.

The model predictions are initialized on (b) 1 Jan and (d) 1 Mar; thus, results are not available prior to the

initialization date.
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developed by Allen and Smith (1997), has been widely

used in previous studies, including ones on climate

change and climate predictability, to extract the S/N

EOF patterns (Venzke et al. 1999; Chang et al. 2000; Hu

andHuang 2007; Ting et al. 2009; DelSole et al. 2011). In

the context of ensemble simulations, the ‘‘signal’’ is es-

timated as the ensemble mean over all ensemble mem-

bers, representing the consistency among ensemble

members. The ‘‘noise’’ is estimated as the distance from

the ensemble mean. This method produces an ordered

set of patterns such that the first maximizes the ratio of

signal-to-noise variance, the secondmaximizes this ratio

subject to being uncorrelated with the first, and so on.

3. Results

The stratosphere–troposphere coupling is the strongest

during the boreal winter season, when the planetary

waves from the troposphere propagate upward into the

stratosphere. As a consequence, the stratospheric polar

vortex and the westerly winds are weakened. The strato-

spheric wind anomalies migrate downward, affecting

surface climate (Baldwin and Dunkerton 2001; Kidston

et al. 2015). Figures 2a and 2b show the time–height

evolution of the zonal mean zonal wind (averaged over

608–908N) composite differences between the 5 years with

strongest zonal mean zonal wind and the 5 years with

weakest zonal mean zonal wind at 50hPa in January. The

wind anomalies in the stratosphere, peaking in January,

extend to the troposphere inMarch andApril inMERRA

and model predictions from ObsSIC. Similar features are

found for the composites derived based on the zonalmean

zonalwind inMarch (Figs. 2c,d): that is, the strongestwind

anomalies in March are able to influence the troposphere

until May. Although the largest stratospheric variability

occurs in winter, the stratospheric variations in winter and

early spring influence the seasonalmean surface climate in

the spring season, primarily because of the delayed im-

pacts from the stratosphere to the troposphere (Baldwin

and Dunkerton 1999, 2001). In this study, we explore the

role of the stratosphere in surface prediction in both

winter [January–March (JFM)] and spring [March–May

(MAM)] seasons. Surprisingly, given the known strong

troposphere–stratosphere coupling during winter, we find

that the predictive skill of near-surface land temperature

driven by the stratosphere is lower in JFM than MAM in

the FLOR forecasting system (section 3d), presumably

partly because of the strong stratospheric bias in JFM

season in FLOR. More discussions on the results for the

JFM and MAM seasons are provided below.

a. Predictive skill of near-surface land temperature in
MAM

We first evaluate the stratospheric impact on the vari-

ability of Northern Hemisphere near-surface (at 2m)

land temperature in MAM from the two constrained

FIG. 3. The point-by-point correlation skill of boreal spring (MAM) near-surface (2m) land temperature in (a) SST1Strat, (b) SSTonly,

(c) SST1Strat 2 SSTonly, (d) ObsSIC, (e) SST-forcedAIC, (f) ObsSIC 2 SST-forcedAIC, (g) ObsAIC, (h) SST-forcedAIC, and

(i) ObsAIC2 SST-forcedAIC. The retrospective forecasts from ObsSIC, ObsAIC, and SST-forcedAIC are initialized on 1 Mar. Results

are from 12-member means for ObsSIC, ObsAIC, and SST-forcedAIC and 5-member means for SSTonly and SST1Strat. Insignificant

(5% level) areas are masked out in (a),(b),(d),(e),(g), and (h). The stippling in (c),(f), and (i) indicates the difference in correlation skill is

significant at the 10% level. The verification data used here are the 2-m temperature from the CRU during 1981–2014.
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simulation experiments (i.e., SSTonly and SST1Strat).

Recall that SST1Strat has additional observed strato-

spheric information relative to SSTonly; hence, improve-

ment in the simulation of temperature in SST1Strat is

attributable to the stratosphere. Figures 3a and 3b show

the point-by-point temporal correlations of temperature

between the observed and ensemble mean anomalies

from SST1Strat and SSTonly. Compared to SSTonly,

SST1Strat shows significantly higher correlations over

the extratropics, particularly over northern Eurasia and

northernNorthAmerica (Fig. 3c). These results reveal the

stratospheric impact on the interannual variability of near-

surface land temperature over Northern Hemisphere ex-

tratropics, consistent with the results in Douville (2009).

However, the additional correlation skill gained in

SST1Strat is estimated given realistic stratospheric in-

formation. In other words, it is the potential (upper limit

of) predictability, assuming one is able to predict the

stratosphere perfectly. In the forecasting system, a re-

alistic stratosphere is only given at the initial state, and

the stratosphere cannot be predicted perfectly. There-

fore, the predictions made from the forecasting system

may not be able to realize the potential predictability

estimated from the simulations with observed strato-

spheric information. A question we ask is whether the

potential predictability driven by the stratosphere can

be realized in the real-time forecasting system. To ad-

dress this question, we investigate the predictive skill of

seasonal mean temperature in FLOR retrospective

forecast experiments: SST-forcedAIC and ObsSIC. As

shown in Fig. 3d, the MAM near-surface land temper-

ature in most areas over the Northern Hemisphere can

be predicted with significant skill in ObsSIC, which

contains additional observed information in the strato-

spheric initial conditions relative to SST-forcedAIC.

Most importantly, the correlation skill in ObsSIC is

substantially higher than the skill in SST-forcedAIC

(Fig. 3e) over northern Eurasia and northeastern North

America. The above results reveal that the stratospheric-

driven potential predictability over extratropics can be

predicted skillfully in the FLOR forecasting system. The

large-scale structure of the actual predictive skill driven

by the stratosphere (Fig. 3f) is consistent with the po-

tential skill arising from the stratosphere estimated from

the constrained simulations (Fig. 3c). Sigmond et al.

(2013) and Tripathi et al. (2015) also documented en-

hanced forecast skill of wintertime surface temperature

over northern Russia and eastern Canada when initial-

izing the stratosphere during sudden warmings, which is

in line with our results. Note that the above predictive

skill of MAM temperature in ObsSIC and SST-

forcedAIC is computed using predictions initialized

on 1 March, which are considered as lead-0-month

predictions for MAM. We also investigate the pre-

dictions ofMAM temperature initialized on 1 February

(i.e., lead-1-month predictions for MAM) in ObsSIC

FIG. 4. (a) The first potentially predictable pattern of MAMmean SLP (hPa) in SST1Strat simulations. (b) The

ensemble mean time series associated with the predictable SLP pattern in SST1Strat, SSTonly, ObsSIC, and the

observations. The regression map of near-surface land temperature (c) with the predictable SLP pattern in

SST1Strat, and (d) from CRU observations with the observed Niño-3.4 index. The MAM SLP in ObsSIC is ini-

tialized on 1 Mar. The values in (b) are the anomaly correlation coefficients between the time series in SST1Strat

(red), SSTonly (blue), ObsSIC (green), and the observations (black). Insignificant areas (at the 10% level) are

masked out in (c) and (d).
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and SST-forcedAIC and find the skill levels in the two

experiments are comparable (figure not shown). There is

no significantly higher skill in ObsSIC than SST-

forcedAIC for lead-1-month predictions. This is ex-

pected because the seasonalmean stratospheric variability

is generally unpredictable a month ahead in this model.

Thus, lead-0-month predictions initialized with observed

stratospheric information may be better able to predict

stratospheric influence on surface climate.

We now further investigate the predictive skill in

ObsAIC. Compared to ObsSIC, ObsAIC includes addi-

tional observed initial conditions in the troposphere. As

seen from Figs. 3f and 3i, ObsAIC shows slightly higher

skill thanObsSIC in places such asAlaska, central Canada,

and central Europe, implying the tropospheric initial con-

ditions play a certain role in the predictive skill of surface

temperature. In addition, relative to SST-forcedAIC, Ob-

sAIC also shows enhanced skill over northern Eurasia and

northeastern NorthAmerica (Fig. 3i), similar to the results

from experiments with observed stratospheric initial con-

ditions (Figs. 3c,f). This again suggests that the stratosphere

is the primary source of the enhanced skill over northern

Eurasia and northeastern North America.

Note that the 0-lead seasonal predictive skill derived

from ObsAIC includes the weather skill in the first week

or so. However, this is not the case for ObsSIC. In the

initial conditions ofObsSIC, the day-to-dayweather states

are not in phase with those in the observations (figure not

shown), but the low-frequency variations like the AO are

correlated with observed ones (see Fig. 5). Thus, the

contribution of weather skill to the 0-lead seasonal pre-

diction is ruled out in ObsSIC. We therefore directly

demonstrate that the dominant predictability source of

0-lead seasonal prediction is not from the predictable

extratropical weather patterns in the first week or so.

b. Potentially predictable pattern of sea level pressure
in MAM

Tounderstand themechanism that leads to the improved

skill of near-surface land temperature in SST1Strat,

ObsSIC, and ObsAIC, we identify potentially predict-

able patterns of MAM mean SLP over 208–908N in the

SST1Strat simulations using the S/N EOF method and

then project the predictable patterns onto other exper-

iments and the observations to obtain their associated

temporal variations.

The most potentially predictable pattern shows the

extratropical teleconnection associated with El Niño,
with the largest negative SLP anomalies over the

northern Pacific (Fig. 4a). The regression map of near-

surface land temperature (Fig. 4c) on this pattern dis-

plays an El Niño–related structure and is similar to the

regression pattern of temperature on the Niño-3.4 index
in the observations (Fig. 4d). The time series of this

pattern in SST1Strat, SSTonly, ObsSIC, and the ob-

servations are all significantly correlated with the ob-

served Niño-3.4 index, suggesting that the source of the

skill arises from the ocean (Fig. 4b). This argument is

also supported by the comparable correlation skill be-

tween the time series in the observations and the time

series in SST1Strat (R5 0.52) and SSTonly (R5 0.55),

because both of these two simulation experiments con-

tain predictability from the SSTs.Moreover, this pattern

is highly predictable in ObsSIC predictions with a

FIG. 5. As in Fig. 4, but for the second potentially predictable pattern. In (d) the regression is performedwith theAO

index derived from MERRA.
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significant correlation skill of 0.62, comparable to the skill

shown in other forecastmodels (Athanasiadis et al. 2014).

In contrast to the oceanic forcing of the first predictable

pattern, the second potentially predictable pattern is

primarily driven by the stratosphere. This pattern shows

anAO structure. The largest negative SLP anomalies are

found over the polar region and positive anomalies are

found over the extratropics (Fig. 5a). Unlike the ensem-

ble mean time series of this pattern in SST1Strat, which

is significantly correlated with the observed time series

FIG. 6. Scatterplot of theMAMmean normalized polar vortex index derived fromMERRA vs the time series of the

MAM mean SLP anomalies of the second potentially predictable pattern (i.e., the AO pattern in Fig. 5a) in

(a) MERRA, and ensemble mean of (b) SST1Strat, (c) SSTonly, (d) ObsSIC, (e) ObsAIC, and (f) SST-forcedAIC.
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FIG. 7. The composite differences of MAM zonal mean zonal wind between the 5 years with strongest polar

vortex and the 5 years with the weakest polar vortex in (a) MERRA, and ensemble mean of (b) SST1Strat,

(c) SSTonly, (d) ObsSIC, (e) ObsAIC, and (f) SST-forcedAIC. The polar vortex is derived based on the zonal mean

zonal wind averaged over 608–908N at 50 hPa from MERRA.
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(R 5 0.79), the ensemble mean time series in SSTonly is

unable to capture the observed evolution of the pattern

(R5 0.18). We thus claim that the stratosphere is the key

predictability source of the AO pattern (Fig. 5b). Strik-

ingly, this AO pattern is skillfully predicted (R5 0.59) in

FLOR seasonal forecasts with observed stratospheric

initial conditions (i.e., ObsSIC).

The regression map of the near-surface land tempera-

ture on the AO pattern in SST1Strat (Fig. 5c) resembles

the observed AO teleconnection pattern (Fig. 5d). The

largest amplitudes are shown over northern Eurasia and

northern North America, where skillful surface temper-

ature predictions driven by the stratosphere are found

(Fig. 3). The above results suggest that the improved skill

in extratropical land temperature is associated with the

AO and is primarily driven by the stratosphere.

c. Dynamical connection between the stratosphere
and troposphere in MAM

The dynamical connection between surface climate

and the stratosphere is demonstrated in the scatterplot

between the normalized stratospheric polar vortex index

(PVI) from MERRA and SLP anomalies of the AO

pattern in MERRA, two constrained simulations, and

three retrospective forecast experiments (Fig. 6). Here,

the PVI is defined as the zonal mean zonal wind at 50hPa

averaged over 608–908N. Significant correlation between

the observed PVI and SLP anomalies of the AO pattern

is found inMERRAand in the experiments including the

observed stratospheric information (i.e., SST1Strat,

ObsSIC, and ObsAIC). In contrast, there is no significant

relationship between the observed PVI and the simulated

SLP anomalies in the experiments without realistic

stratospheric state (i.e., SSTonly and SST-forcedAIC).

Further evidence of the dynamical connection between

the stratosphere and troposphere is shown in the zonal

mean zonal wind composite differences between the 5

years with strongest PVI and the 5 years withweakest PVI

(Fig. 7). These 10 extreme stratospheric polar vortex years

are chosen based on MERRA. As seen from Fig. 7a, the

strong extratropical stratospheric westerlies, north of

around 508N, extend to the lower troposphere, which

provides the dynamical condition for the impact of the

stratosphere on the troposphere. This feature is well

captured in the ensemble mean SST1Strat simulations

(Fig. 7b). We emphasize that such a connection is repro-

duced in ObsSIC and ObsAIC predictions with strato-

sphere initialization (Figs. 7d,e), again highlighting the

role of the stratosphere in seasonal prediction of surface

climate. Consistent with the results shown in Fig. 6, the

SSTonly and SST-forcedAIC experiments do not show

connection between the stratosphere and troposphere.

d. Predictive skill of near-surface land temperature in
JFM

In this section, we discuss the results for the boreal

winter season. In summary, we repeat the above calcu-

lations for JFM. We find, in general, the skill is lower in

JFM than MAM in all experiments, particularly in

ObsSIC. The stratospheric-driven potential predictability

estimated in relaxation-toward-observation simulations

is not achieved in the predictions with stratosphere ini-

tialization (i.e., ObsSIC), but it is well realized in the

predictions with initialization of the entire atmosphere

(i.e., ObsAIC). Possible reasons for the low predictive

skill in JFM are discussed below.

Figure 8 displays the point-by-point correlation skill

of JFM near-surface land temperature in FLOR

FIG. 8. As in Fig. 3, but for the JFM season.
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simulation experiments and retrospective forecast ex-

periments. Similar to the MAM season, the ensemble

simulations with realistic stratosphere (i.e.,

SST1Strat) demonstrate higher skill over northeastern

North America and northern Eurasia relative to the

simulations without realistic stratosphere (i.e.,

SSTonly). However, unlike the results for the MAM

season, the potential predictability driven by the

stratosphere is not achieved in ObsSIC (Fig. 8d). Only

limited areas show significantly higher skill in ObsSIC

than SST-forcedAIC (Fig. 8f). But, including addi-

tional observed tropospheric initial conditions, the

ObsAIC experiment does show higher predictive skill

over North America and northern Eurasia than SST-

forcedAIC (Fig. 8i).

To understand why the winter potential predictability

driven by the stratosphere is not well predicted in

ObsSIC, we show in Figs. 9a and 9c the scatterplots

between the PVI derived fromMERRA and the PVI in

ObsSIC for JFM and MAM seasons. In JFM, ObsSIC

tends to overestimate the PVI, particularly for the weak

polar vortex years. In contrast to the winter season, the

observed PVI in spring is well predicted in ObsSIC

(R 5 0.72), although the polar vortices are weaker in

spring than in winter. The overestimation of the PVI in

JFMmay be a result of the large stratospheric wind bias

in FLOR for winter season, as shown in Fig. 1. Because

of the positive stratospheric wind bias, FLOR fails to

predict weak polar vortices, resulting in limited skill in

predicting surface climate over the extratropics. In-

terestingly, adding realistic tropospheric initial con-

ditions, the correlation between the PVI inMERRA and

in ObsAIC is higher in JFM but lower in MAM than the

correlation in ObsSIC (Figs. 9b,d). This indicates the

tropospheric conditions play a certain role in the forecast

of the polar vortex in winter, supporting the fact that the

stratosphere–troposphere coupling is strong in winter.

However, for the spring season, the downward influence

from the stratosphere to the troposphere may dominate.

The strong coupling between the stratosphere and

FIG. 9. Scatterplot between the PVI inMERRA and the PVI in (left) ObsSIC and (right) ObsAIC for (top) JFM

and (bottom) MAM seasons. The value in each panel indicates the correlation coefficient between the PVI in

MERRA and the PVI in predictions.
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troposphere in the winter season might also lead to low

skill in the prediction of surface climate.

4. Summary and discussion

This study explores the role of the stratosphere in sea-

sonal prediction of extratropical near-surface land tem-

perature in boreal winter (JFM) and spring (MAM)

seasons. We design two sets of target experiments using

FLOR to isolate the role of the stratosphere. One set of

experiments consists of two constrained simulation ex-

periments with and without the observed stratospheric

state. The other set of retrospective forecast experiments

consists of ensemble predictions with and without ob-

served stratospheric initial conditions and ensemble pre-

dictions with observed initial conditions in both the

stratosphere and troposphere. Using these experiments,

we reveal that the stratosphere is the driver of skillful

seasonal prediction of near-surface land temperature over

the extratropics, particularly over northern Eurasia for the

MAM season. The stratosphere affects surface climate

through its influence on the AO. The dynamical connec-

tion between the stratosphere and the troposphere in the

observations andmodel predictions is demonstrated by the

significant correlations between the stratospheric PVI and

SLP anomalies, as well as the migration of stratospheric

zonal wind anomalies to the lower troposphere. As for the

JFM season, the potential predictability driven by the

stratosphere is not well achieved in the FLOR retrospec-

tive forecast experiment that has observed stratospheric

initial conditions (i.e., ObsSIC), presumably because of the

strong positive stratospheric wind bias in the JFM season

in FLOR.ObsSIC fails to predict weak polar vortices, thus

adding little skill relative to the predictions without

realistic stratospheric initial conditions (i.e., SST-

forcedAIC). In addition, the strong coupling between the

stratosphere and troposphere in the winter season (JFM)

might lead to low skill in the prediction of surface climate.

We emphasize the connection between the strato-

sphere and surface climate on seasonal time scales be-

cause the stratosphere influences surface climate

throughmodulating large-scale circulation (e.g., AO) on

seasonal scales. Presumably because of the strong

stratospheric zonal wind bias in the JFM season, FLOR

tends to underestimate weak polar vortices. With the

development of climate models that better represent the

stratosphere dynamics and the stratosphere–troposphere

coupling, the predictive skill of Northern Hemisphere

extratropical surface climate in winter is expected to be

improved. This study provides a scientific basis for model

development. Our results also have practical implications

for climate services, including for instance sectors and the

transport system (Palin et al. 2016).
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